banner
News center
Good quality raw material, strict quality control

Improve your bone health naturally

Oct 11, 2023

Osteoporosis is a global health epidemic that affects millions. A recent report from the International Osteoporosis Foundation (IOF) found that 200 million people across Europe have osteoporosis, a number only set to rise as populations age. (1)

The disease represents a significant cost to healthcare providers, costing the NHS £5.5 billion annually. (2) This doesn't account for the cost to the individual, their family, or the economy.

Many common treatments have side effects and contraindications that are not always suitable for everyone, especially children. Low-intensity Vibration therapy offers a new and innovative way to prevent and combat osteoporosis, using gentle vibrations to stimulate the body's cells and encourage bone growth.

Vibrations or mechanical signals dictate many of the body's natural biological processes. When we walk, every step sends a series of vibrations through our bone cells. These stimulate growth and play a key role in building healthy bones.

Ageing, hormones, and underlying health conditions affect how well our bodies respond to these signals and develop bone. Often it is a combination of these factors which reduces bone density and leads to the development of osteoporosis.

Astronauts experience a similar issue. Free from the forces of gravity, their bodies don't experience the mechanical loading required to stimulate bone growth. This puts astronauts at an increased risk of osteoporosis. Recognising this, NASA tasked Professor Clinton Rubin with finding a solution.

He discovered a precise, targeted vibration that will mimic the body's natural signals and encourage the mesenchymal stem cells in the bone marrow to reproduce. (3) Professor Rubin quickly realised the potential this technology had to improve bone health on Earth. After spending 35 years researching and refining the technology, the Marodyne LiV device was developed – a safe, effective, and certified Low-intensity Vibration plate.

When considering vibration therapy, it's important to understand the intensity of a device before using it. Most whole-body vibration plates, typically those found in gyms, vibrate at a high intensity often exceeding 1.0g. This level of vibration has significant side effects and contraindications, making it unsuitable for many users, especially those with underlying health conditions such as osteoporosis. (4,5)

By contrast, the Marodyne LiV device has no contraindications and can be used safely with confidence by both children and adults. Vibrating at exactly 0.4g at 30hz, the device emits a high frequency but low magnitude signal – the exact calibration Professor Rubin found to increase bone density effectively.

Alongside the benefits to bones, Low- intensity Vibration therapy has been proven to deliver additional health benefits; as the plate vibrates, the muscles within the legs contract to stabilise the body. This improves muscle strength and balance, reducing the risk of falls. Improved circulation is another benefit of using the Marodyne LiV device. As the plate vibrates, the vibrations stimulate muscles and encourage blood flow. (6)

Many people can benefit from vibration therapy, especially those who are already at an increased risk of developing osteoporosis.

Whilst osteoporosis can affect anyone, women are most impacted, with half of women over 50 expected to develop the disease. (7) This is largely due to the impact menopause has on the body's hormones. Through perimenopause and menopause, the body's levels of oestrogen, testosterone and progesterone all drop. As these hormones regulate bone density, their reduction increases the likelihood of osteoporosis.

Extensive studies have established that Low-intensity Vibration therapy can prevent and combat osteoporosis. One systematic review concluded, "Low-magnitude whole-body vibration can provide a significant improvement in reducing bone loss in the lumbar spine in postmenopausal women." (8)

Vibration therapy also provides additional benefits for paediatric care. Studies suggest that Low-intensity Vibration therapy could aid children with conditions such as idiopathic scoliosis and osteogenesis imperfecta. (9,10) Since many common pharmacological treatments are not used for children due to their side effects, Low- intensity Vibration therapy offers a natural alternative with no contraindications or side effects.

Thousands of people across the world have already benefitted from Low-intensity Vibration therapy, and its use by healthcare professionals is growing.

Certified as a class IIa medical device by the British Standards Institution (BSI), the device has the potential to form a core part of clinical guidelines in the future care and prevention of osteoporosis. Find out more about the Marodyne LiV device.

References

Osteoporosis is one of many musculoskeletal conditions that is currently gaining prominence in public health, driven by ageing population trends across the globe. Its key features include reduced bone density and skeletal fragility that may not become apparent until a fracture occurs, most commonly in the hip, spine or wrist. Gender disaggregation of available data reveals the significantly higher prevalence among women due to menopausal changes and reduced estrogen levels, underscored by their lower peak bone mass and higher life expectancy. While major bone loss usually occurs in men in their sixties, it tends to happen as early as 50 years of age in women. (1) All of these components are vital to understanding osteoporosis, tackling the condition and promoting healthy ageing.

Recurrent falls are common in elderly people with serious consequences – approximately 5% of falls lead to fractures (2) – and osteoporosis is usually implicated when a fracture follows a low-energy injury. Such presentations should be offered comprehensive risk assessments to identify deviation of bone mineral density and any osteoporosis risk. Moreover, low peak bone mass during adolescent development may also predispose to osteoporosis in both sexes, especially when associated with delayed puberty or undernutrition.

As per the 2019 Global Burden of Disease study, more than 1.7 billion people across the globe suffer from musculoskeletal conditions, resulting in significant limitations in mobility, significant pain and subsequent disability in those affected. This group of more than 150 diseases is implicated as the largest contributor to the disability burden globally (17%).

Projections show that these numbers are expected to increase significantly over the coming years – most prominently in low- and middle-income countries – driven by population growth, ageing, socio-economic development and subsequently higher life expectancy. The absolute number of older persons is currently estimated at approximately 1 billion, with WHO projections showing that one in every six persons will be aged 60 years or above by the year 2030. (3) With this comes a dramatic increase in the need for long-term care in view of the decreasing younger population and women's changing societal roles.

Across the globe, an osteoporotic fracture occurs every 3 seconds, resulting in almost 9 million fractures every year. (4) According to the Global Osteoporosis Foundation, (5) osteoporosis affects 6.3 and 21% of men and women, respectively, by the age of 50 years. The risk of osteoporotic fractures is seen to vary across countries and is generally higher in urban settings, implicating environmental influences on bone mass.

Data on osteoporosis is scarce in the Eastern Mediterranean Region, yet it is projected to show the highest proportionate increase in hip fractures among all regions, driven by urbanization. The region's population also suffers from low vitamin D across all age groups, despite the sunny environment. (6)

Overall, the health and social consequences of an osteoporotic fracture are huge, depending on its site, other chronic illnesses and age. These can include lengthy hospitalizations, extended immobility with its associated secondary complications, and the consequent loss of independence. The most common, serious, and painful type is hip fracture, which may have fatal or permanently disabling outcomes. On the other hand, vertebral and wrist fractures have less dramatic consequences but may be indicative of an increased predisposition to other types of fractures with further ageing. Despite this increasing disease burden and associated higher health care and societal costs, the required public health attention to osteoporosis is yet to be realized in the region. The emergency context in many countries of the region also diverts the attention of health policy-makers to more pressing issues for healthy ageing.

Osteoporosis, as with musculoskeletal and other ageing conditions, is further driven by adverse social and physical environmental conditions. These increasing trends call for speculation – are we observing the consequences of certain risk factors that are currently causing loss of bone density, such as cigarette smoking, physical inactivity, diet or environmental factors? Or could this cohort be manifesting the consequences of an earlier exposure in this generation of older people? Further research is needed to provide the answers.

Nutrition is integral to bone health, given that vitamin D, calcium or protein deficiency affects skeletal growth and accelerates bone loss. Indeed, one of the main preventive strategies to prevent osteoporosis is increasing calcium intake, which is proven to reduce bone loss and subsequently reduce the risk of fractures – especially when coupled with protein replenishment to increase bone mass. In addition, addressing hormonal imbalances as a result of menopause or thyroid dysfunction are key aspects that need consideration.

Various lifestyle factors – tackling physical inactivity, obesity, smoking and alcohol consumption – are generally considered beneficial in reducing osteoporosis risk and should be encouraged. Exercise is known to enhance skeletal load-bearing capacity, but would need to be sustained to be effective. Prevention strategies need to be tailored to age – in younger people addressing lifestyle changes, while for older people they focus on the prevention of falls, physiotherapy and pharmacological interventions. These preventive actions are being promoted in this year's World Osteoporosis Day on 20th October, themed "Step up for bone health".

"As we commemorate World Osteoporosis Day, WHO calls for joint action to step up bone health, through the adoption of life- style changes that encourage physical activity and reduce obesity, smoking and alcohol consumption. WHO works closely with its Member States towards ensuring integrated, people-centered care that gives due attention to the prevention and management of osteoporosis," Asmus Hammerich, Director, Universal Health Coverage/Noncommunicable Diseases and Mental Health Department comments.

Population-based screening for osteoporosis is challenged by cost, low specificity and sensitivity of available tests, and poor compliance with subsequent treatment instructions – hence lowering the returns on such investments. However, screening to assess bone density for women at menopause or elderly high-risk individuals, can be considered through opportunistic screening – these groups should also be a primary target for preventive measures. There is a need to further increase awareness regarding osteoporosis for healthy ageing among health professionals as well as the population at large.

Management of osteoporosis includes both pharmacological and non-pharmacological approaches and revolves around maintaining a healthy skeletal mass that resists fractures, addressing the significant age-related declines that occur in bone mineral content – a reduction of approximately 4% per decade after the age of 20 in males, and 15% per decade after menopause in females. (7) Moreover, addressing exogenous factors, such as fall prevention, is key. It is noteworthy that the same interventions (calcium supplementation, exercise, quitting smoking, etc.) apply to both the prevention and treatment of osteoporosis. The main goals of therapy are to improve bone strength, reduce risks of falls and injury, relieve symptoms of fractures and residual deformities, and eventually maintain functionality. (8)

Bone mineral density can be enhanced through a variety of pharmaceutical drugs that reduce bone resorption and turnover- namely calcium supplementation, vitamin D (to counteract reduced exposure to sunlight in elderly people), bisphosphonates, and oestrogen derivatives. They should only be used when the benefit outweighs the risk – for example, prolonged oestrogen use raises the risk of breast and endometrial cancers as well as thromboembolism. New pharmaceuticals for the treatment of osteoporosis are under development, and bone-active agents being used vary from country to country. WHO member states are currently adopting varying treatment protocols for osteoporosis based on licensing, cost and local acceptability. This is an area needing further research to facilitate standardization.

As the lead agency in public health, the World Health Organization (WHO) provides technical guidance to its member states on key global public health issues. In 2003, WHO published "The Prevention and management of osteoporosis: report of a WHO scientific group", which has paved the way for more recent efforts on the subject. Moreover, it served as a core resource for the development of practical guidelines and educational material for osteoporosis management within primary care settings using up-to-date scientific knowledge.

WHO efforts to address osteoporosis are firmly embedded within an overarching public health response towards ensuring healthy ageing, aiming to deliver integrated care that maintains intrinsic capacity and functional ability across the life course. In conjunction with its 2016 WHO Global strategy and action plan on ageing and health, WHO leads the implementation of the UN Decade of Healthy Ageing 2021-30 (9) which encourages collaborative action across a wide range of actors. Of relevance to osteoporosis is the Decade's focus on integrated, people-centred care and preserving older people's functional capacities, shifting from the traditional focus on disease management.

To this end, WHO has developed various guiding documents and tools, including the "Integrated care for older people (ICOPE)" and its implementation guide, which aim to build the capacity of healthcare providers to detect and manage declines in physical and mental capacities. It grants significant attention to nutritional perspectives and reduces the risk of falls, which are critical in preventing and reversing the functional declines and risks associated with osteoporosis. Moreover, and in alignment with the rising need for rehabilitation among such patients, WHO's Rehabilitation 2030 initiative, launched in 2017, calls for ensuring the availability of rehabilitation services across the care continuum, including for those with musculoskeletal conditions.

In line with its mandate of strengthening governance and developing strategic directions within its member states, WHO is working with countries to identify strategic actions needed to prevent and manage osteoporosis. This requires an inclusive process that brings together all concerned actors to adequately address the diverse strategic actions needed across the continuum of care, from communities, through primary settings to specialized care. This entails raising public awareness through all available channels, building capacity at the primary care level to facilitate early identification, and strengthening infrastructure at referral facilities to deliver quality multidisciplinary care. In the Eastern Mediterranean Region, a WHO Collaborating Center has been established at Tehran University of Medical Sciences, in the Islamic Republic of Iran, to provide technical assistance for osteoporosis research to all countries of the region.

Osteoporosis is a common and silent disease until it is complicated by fractures yet can be diagnosed and prevented through the adoption of effective management strategies. To prioritize osteoporosis among the wide range of public health issues, accurate estimates of its burden (in terms of mortality, morbidity, and economic costs) need to be established; the burden of fracture, especially among elderly groups or menopausal women, or the costs of consequent care required, could serve as a proxy. Analysing cost implications, whether to the health care system, the individual or society could encourage investments in this area, based on the cost-effectiveness of individual interventions. Social determinants that predispose to osteoporosis and impact its management require due consideration, as well as the social consequences of the disease and secondary morbidity associated with fractures. The environmental influences on bone mass also need to be further explored.

Furthermore, with the current attention being given to menopausal women, osteoporosis in men is an area that could potentially require further investigation.

Moreover, given the varying thresholds for assessing osteoporosis and a multitude of different treatment protocols being adopted by countries, there are critical management gaps that need to be filled through research. This can guide the development of unified and evidence- based protocols to identify intervention thresholds. Moreover, studies that evaluate the impact and feasibility of population programmes in osteoporosis prevention are needed to guide prevention strategies that can be contextualized to generate impact across the globe.

To download this full eBook ‘Improve your bone health naturally’ click here